skip to main content


Search for: All records

Creators/Authors contains: "Sanna, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Young massive stars warm up the large amount of gas and dust that condenses in their vicinity, exciting a forest of lines from different molecular species. Their line brightness is a diagnostic tool of the gas’s physical conditions locally, which we use to set constraints on the environment where massive stars form. We made use of the Atacama Large Millimeter/submillimeter Array at frequencies near 349 GHz, with an angular resolution of 0′′.1, to observe the methyl cyanide (CH 3 CN) emission which arises from the accretion disk of a young massive star. We sample the disk midplane with twelve distinct beams, where we get an independent measure of the gas’s (and dust’s) physical conditions. The accretion disk extends above the midplane, showing a double-armed spiral morphology projected onto the plane of the sky, which we sample with ten additional beams: Along these apparent spiral features, gas undergoes velocity gradients of about 1 km s −1 per 2000 au. The gas temperature ( T ) rises symmetrically along each side of the disk, from about 98 K at 3000 au to 289 K at 250 au, following a power law with radius R −0.43 . The CH 3 CN column density ( N ) increases from 9.2 × 10 15 cm −2 to 8.7 × 10 17 cm −2 at the same radii, following a power law with radius R −1.8 . In the framework of a circular gaseous disk observed approximately edge-on, we infer an H 2 volume density in excess of 4.8 ×10 9 cm −3 at a distance of 250 au from the star. We study the disk stability against fragmentation following the methodology by Kratter et al. (2010, ApJ, 708, 1585), which is appropriate under rapid accretion, and we show that the disk is marginally prone to fragmentation along its whole extent. 
    more » « less
  2. Boeri, L. ; Hennig, R. ; Hirschfeld, P. ; Profeta, G. ; Sanna, A. ; Zurek, E. (Ed.)
    Last year, the report of Room-Temperature Superconductivity in high-pressure carbonaceous sulfur hydride marked a major milestone in the history of physics: one of the holy grails of condensed matter research was reached after more than one century of continuing efforts. This long path started with Neil Ashcroft’s and Vitaly Ginzburg’s visionary insights on high-temperature superconductivity in metallic hydrogen in the 60’s and 70’s, and has led to the current hydride fever, following the report of high-Tc high-pressure superconductivity in H3S in 2014. This Roadmap collects selected contributions from many of the main actors in this exciting chapter of condensed matter history. Key for the rapid progress of this field has been a new course for materials discovery, where experimental and theoretical discoveries proceed hand in hand. The aim of this Roadmap is not only to offer a snapshot of the current status of superconductor materials research, but also to define the theoretical and experimental obstacles that must be overcome for us to realize fully exploitable room temperature superconductors, and foresee future strategies and research directions. This means improving synthesis techniques, extending first-principles methods for superconductors and structural search algorithms for crystal structure predictions, but also identifying new approaches to material discovery based on artificial intelligence. 
    more » « less